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Aerospace and Ocean Engineering Department
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\ ABSTRACT P
\ 3
The viscous shock-layer equations for three-dimensional
hypersonic flows of a perfect gas or equilibrium air over lifting
bodies at high angles of attack have been developed. For the complex
three-dimensional reentry vehicle geometries of interest, the re-
sulting equations are written in a ncnorthogonal, body-oriented
coordinate system, and the three velocity components are defined
in the nonorthogonal coordinate directions. Since the viscous
shock-layer governing equations are parabolic in both the stream-
wise and crossflow directions, the equations are solved by a highly
efficient finite-difference scheme. The principal advantages of
this technique are (i) the numerical method can be used to predict
the flowfield about arbitrary geometries in both subsonic and super-
sonic regions, (ii) the solution is direct, and (iii) the effects of
inviscid-viscous interactions are uniformly valid throughout the
shock layer. Numerical solutions have been obtained for a 1:1.4
(perfect gas), 1:2 ellipsoid in a perfect gas or equilibrium air
and the nose portion of the shuttle orbiter at zero, 10 and 25-deg
angles of attack. Comparisons were made with inviscid solutions
and existing experimental data, and the agreement is good for all
the cases.

INTRODUCTION

Various analyses are available to investigate the flowfields and wall-
measurable quantities for hypersonic flow past an axisymmetric blunt body at
different angles of attack. However, the effects of the noncircular body
geometry can be significant, and the main purpose of this study is to develop
a technique to predict hypersonic viscous flows over a noncircular body at
typical planetary entry conditions.

Recently a numerical method for 3-D laminar, transitional and/or turbu-
lent hypersonic flows of perfect gas over a blunt body, used for planetary
probes, has been investigated1 at different angles of attack by using an
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implicit finite-difference viscous shock-layer analysis. However, that

analysis is valid for axisymmetric bodies only. For the complex three-

dimensional lifting reentry vehicle geometries of interest, the resulting !
equations are written in a nonorthogonal body-oriented coordinate system, |
and the three velocity components are defined in the nonorthogonal coocrdinate

directions. This procedure is different from writing the equations in an

orthogonal coordinate system and explicitly performing a coordinate trans-

formation. Since the viscous shock-layer equations are parabolic in both the

streamwise and crossflow directions, the equations were solved by a highly

efficient finite-difference scheme's>?. The principle advantages of this

technique are (i) the numerical method can be used to predict the flowfield

about arbitrary geometries in both subsonic and supersonic regions, (ii) the

solution is direct, and (iii) the effects of inviscid-viscous interactions

are included within a single set of governing equations which are uniformly

valid throughout the shock layer.

The basic formulation of the problem is presented in Section 2. Boundary
conditions at the body surface and immediately behind the shock are given in
Section 3. Coordinates and method of solution are presented in Sections 4
and 5, respectively. The results are discussed in Section 6, and the con-
clusions are presented in Section 7.

BASIC FORMULATION

The basic equations are derived from the steady Navier-Stokes equations
in general body-oriented tensor form (Figure 1). One of the coordinates,
£1, is chosen in the general axial direction, and another, £2, in a direction
normal to the body, and the third, £3, around the body. The coordinate sys-
tem requires orthognality only at the body surface. The normal velocity v
and normal coordinate £2 are assumed to be of order € , and all terms which are
of higher order than € are neglected. The methods of obtai-.ing these equa-
tions are discussed in detail elsewhere?;®. The nondimensional form of the
viscous shock-layer equations that are applicable in the present case can be
written as follows:

Continuity Equation:

2 (pug? + = (ove® + (owg®) = 0 (1)
351 BE 353 .
El-Momentum: K E
- 4
du 9 2 1 1 -y
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It should be noted that the Prandtl number is assumed constant for a
perfect gas and is a function of pressure and temperature for a gas in chemi-
cal equilibrium.

Equation of State

p = p(p, h) (6)

For a perfect gas, Equation (6) has the analytical form

p = yp/[(y-1)RT]

where 7Y 1is the ratio of specific heats. For the chemical equilibrium as-
sumption, the functional relation may be given by a table or an approximate
analytical expression (curve fits) which are given in detail in Reference 4.

In the governing equations {jlk} are Christoffel symbols of the second

kind, and the matrix g;; can be obtained numerically from the grid generation
procedure. 1

BOUNDARY CONDITION

In order to solve the above set of governing equations, it is essential
to specify appropriate boundary conditions at the body surface and at the
shock. At the body surface (wall), no-slip and no-temper:ature-jump conditions
were used. Consequently, u, = v, = w, = 0, and the wall temperature or heat-
transfer rate was specified. The conditions immediately behind the shock were
obtained by using the Rankine-Hugoniot relaticns. However, before those equa-
tions may be applied, the tangential and normal components of the velocity
must be found. These componentg are obtained by the method of Rakich®. An
grthogonal set of vectors with N a unit vector normal to the shock surface and
T a tangent vector is considered. The N-T plane is parallel to the direction
of freestream U_. Then the two-dimensional Rankine-Hugoniot relations are
used to calculate the conditions behind the shock. The total velocity can be
written as

U=u_.T+vU. N

U -bN ;
Qa ¢) - (_c_oso Tatﬁ) €¢ 7)




where a, b, ¢, 0 and & are given by Rakich®. After the velocity behind the
shock has been calculated, it is necessary to rotate these components into a
body- normal nonorthogonal coordlnate system This is done by expressing the
vectors ez, er, e¢ in terms of gl, g2, g3 in the gl, 52, g directions

- -~ ~— "1 — -
~ ] 9z or 3¢
e = T -1
z ; 85 851 851 1
~ . 0z or a¢ >
e . = i\ R~ A~ T g
r l e BEZ 8&2 852 2;
] ! {
~ dz or 99 o
e, CmE mE— X g, | (8)
i ¢ ! , 8£3 853 3& . 3_

Using Equation 8, the shock velocity components in the body-normal non-
orthogonal coordinate system are determined.

COORDINATE GENERATION

Based on the general curvilinear coordinate governing equations, a body-
oriented nonorthogonal coordinate system is constructed. This is first done
on the surface of the body, where &£; = 0, and then extended to the points
away from the surface of the body. The coordinate system requires ortho-
gonality only at the body surface, and the EZ coordinate is always orthogonal
to £7 and £3. The approach used is an extension of that presented by Blottner?
and a detailcd discussion of a similar procedure can be found in Reference 3.

METHOD OF SOLUTION

Davis’ presented an implicit finite-difference method to solve the
viscous shock-layer equations for axially symmetric flows. Murray and Lewis?
extended the method of solution to three-dimensional high angle of attack
conditions. The present method of solution is identical to that of Murray
and Lewis. Therefore, only an overview of the solution procedure is presented.

The solution begins on the blunt nose by obtaining an approximate stag-
nation solution in the wind-fixed coordinate system. The 3-D solution begins
on the windward plane and marches around the body obtaining a converged so-
lution in each ¢ sweep. After completing a sweep in the ¢ direction, the
procedure then steps downstream in &. and begins the next ¢ sweep. At each
point the equations are solved in the following order (i) ¢-momentum, (ii)
energy, (iii) £;-momentum, (iv) integration of continuity for Y , and (v)
coupled continuity and normal momentum equations.

RESULTS AND DISCUSSION

Numerical solutions of the three-dimensional nonorthogonal shock-layer
equations were obtained for a 1:1.4, 1:2 ellipsoid and the nose portion of
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the shuttle orbiter at different angles of attack. It should be mentioned
here that the wind-fixed coordinate system is used in the 1:2 ellipsoid
10-deg angle of attack case. The freestream conditions for these cases are
given in Table 1. Comparisons are made for shock standoff distance, surface
pressure distribution and heat-transfer rate with inviscid results and exist-
ing experimental data.

Shock-standoff distance as a function of the coordinate along the body
surface in different ¢-planes is illustrated in Figures 2 and 3. The in-
viscid solutions from Marconi and Yaeger® are also presented and are in very
good agreement with the present nonorthogonal viscous shock-layer calculations.
It is noted that the shock standoff distance increases more rapidly between
¢ = 0 and 30-deg for the 1:2 ellipsoid case than for the 1:1.4 case. However,
this would be expected because the body curvature in the transverse direction
is smaller for the 1:2 ellipsoid case in this region.

Figures 4 and 5 present the surface pressure distribution along the body
at different ¢-planes for these two cases. Some inviscid pressure results are
also presented. It is noted that the inviscid data are in very good agree-
ment with present results.

Figures 6 and 7 show the convective heating rate in several ¢-planes
along the body surface. The solution for Case 1 is compared with the experi-
mental data given by Hillsamer and Rhudys. The results show that the present
prediction is in excellent agreement with the experimental data. Because of
the streamwise body curvature effects, the heating rate is higher at ¢ = 90
and 30-deg than ¢ = 0 deg near the stagnation region for the 1:2 ellipsoid
case. Except in the stagnation region, as was expected, the convective heat-
transfer rate decreases with increasing ¢.

Figures 8, 9 and 10 present the modified 1:2 ellipsoid geometry, surface
pressure and convective heating rate for an equilibrium air calculation. As
shown in Figure 9, the surface pressure is in reasonably good agreement with
the inviscid solution. Since the geometry near the stagnation region is very
flat and narrow, the convective heating rate decreased rapidly between ¢ = 0

and 30-deg. After ¢ = 30 deg, a much smaller heating rate change is noticed
in Figure 10.

Figures 11 to 16 are the body geometry and results of the space shuttle
orbiter nose portion up to seven nose radii. The cross section and longi-
tudinal slope of the shuttle orbiter are given in Figure 11. It is noted
that on the windward side, the body is relatively flat and the transverse
direction curvature changes rapidly at about ¢ = 65-deg. The shock standoff
distance in different ¢~-planes along the body is shown in Figure 12. Because
of the flat windward side, the shock standoff distance decreased slightly on
the windward side and then increased rapidly on the leeward side. The in-
viscid results are also presented, and the agreement is very good. Figure 13
presents the surface pressure distribution around the body at the s = 5,32
station. A very small pressure change was detected on the windward side
(¢ £ 50°). However, a rapidly decreasing surface pressure was noticed in the
region 50 < ¢ <90 due to the transverse curvature effect. On the leeward
side (¢ > 90°), the pressure tends to stabilize and the change is small once
again. Figure 14 shows that the same trend is followed for all stations
along the body surface. Finally, the temperature profiles normal to the body
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surface at s = 0 (stagnation point) and s = 5.325 and the convective heating
rate along the body surface are plotted in Figures15 and 16. Since no other
data are available for this case, only the present results are presented here.
For the same reason discussed earlier, the temperature and heating rate jump
in the region 60 < ¢ <90 was also noticed.

CONCLUSIONS

The main objective of this study is to investigate the influence of the
noncircular body on the shock-layer flow phenomena within reasonable com-
puting times. A general nonorthogonal shock-layer analysis is used. The
present surface pressure, shock standoff distance and convective heating rate
predictions are in good agreement with inviscid solutions and existing ex-
perimental data. The viscous shock-layer technique requires much less computing ]
time than the time-dependent method!® (Table 1). In the future we plan to ‘
include the transitional and/or turbulent flow in the technique.

LIST OF SYMBOLS

C; specific heat at constant pressure
gi unit vector of a general orthogonal coordinate system

%1,22,§3 vectors in El (streamwise), €2 (normal) and €3 (circumferential)

directions
. 9z 9z or or 2 3¢ 3¢
8. metrics g.. = + + r <
ij ij agi BEj agi BEj agi agj
det (g..) = - 2 B T
g Bij’ ~ 811 822 B33 T B2 213 A p/
h static enthalpy, h*/U:2 S L
. LS RS S B
N shock-normal vector B
P pressure - -
Pr Prandtl number £y
DT ?
R body nose radius tory
n INRPECTED
T temperature ‘
* *x2 X . ' ’
T reference temperature, U “/C ) i
ref o " “p O
>
T shock-tangent vector

u, Vv, w streamwise, normal and crossflow velocity components nondimen-
sionalized by the freestream velocity U:
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velocity component normal to the shock

N

UT velocity component tangent to the shock

z,r,¢ cylindrical coordinates

Ys shock standoff distance

a angle of attack

Y ratio of specific heats

b t 2 *U*R*
€ Reynolds number parameter g = uref/pm <Ry

) . x %
M viscosity, /uref
*
uref reference viscosity, U (Tref)
61,52,53 computational coordinates
x %
o density, p /0o,
. dg dg . 0
i . . . 1 im | " “mk mj j
{j k} Christoffel symbol of the 2nd kind, 3 Zg 3T, +3€ 3
m 3 k

Subscript

© dimensional freestream conditions

Superscript

* dimensional quantity
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TABLE 1. Test Case Conditions
Case 1 2 3 4
Body Geometry 1:1.4 1:2 1:2 Shuttle
(ellipsoid) (ellipsoid) (modified
ellipsoid)

T (°R) 81.5 203.5 540.0 94.87
b, slug/ft>  4.118E-6 2.340E~4 7.99E-4 1.0528E-3
p_, psia 0.041 0.567 5.145 0.0119

T, CR) 470 366 3139 540

Re (1/ft) 2.38E46 4.993E46 3.3058E+7 5.5696E45
o, deg 0° 10° 0° 25°
Gas Model perfect gas perfect gas equilibrium perfect gas

air
Computational
Time* (Min) 6 12 16 12

IBM 370/3032

- P —

*It takes approximately two hours CDC 7600 time for a sphere nose when using
time dependent method of Reference 10.
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Figure 15. Space Shuttle Temperature Profile at Stagnation
Point and s = 5.32
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